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Abstract 

For random walks {Sn} whose distribution can be embedded in an exponential family 

large deviation approximations are obtained for the probability that maxo<i<y<m('S'y — 5,) > 6 

(i) conditionally given S^. and (ii) unconditionally. The method used in the conditional case 

seems applicable to maxima of a reasonably large class of random fields. For the unconditional 

probability a more special argument is used, and more precise results obtained. 
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1. Introduction. 

Hogan and Siegmund (1986) adapt the method developed by Pickands (1969), Quails 

and Watanabe (1973), and Bickel and Rosenblatt (1973) to obtain explicit large deviation 

approximations for the maxima of several Gaussian random fields arising in statistics. Using a 

special argument for one particular case, they suggest a heuristic second order approximation 

for that case; and they show by a Monte Carlo experiment that the second order approximation 

frequently gives considerably better numerical results. 

The purpose of this paper is to show that the method developed by Woodroofe (1976, 

1982) for problems in one dimensional time can be adapted to study maxima of random 

fields. Overall it involves simpler computations than the previous method and consequently 

seems potentially capable of delivering a genuine second order approximation should one seem 

desirable. See Woodroofe and Takahashi (1982) for an example in one dimensional time. 

Let Xi,i2,--- be independent, identically distributed random variables, and put Sn = 

xi + • • • + Xn (n = 0,1, • • •). For 6 > 0 define 

t = t{b) = inf{n :  max {S^ - Sk) >b}. ■ 
0<k<n 

Theorem 1 below gives a large deviation approximation to the conditional probability 

(1) p{t<m\Sm = o (e<6) 

when the distribution of the x's can be embedded in an exponential family. Although we 

discuss only this concrete case, it will be apparent that the method is reasonably general. See 

Hogan and Siegmund (1986) and Section 4 for additional examples. For applications of (1) see 

Levin and Kline (1985) and Brown and Adler (1986). 

The unconditional probability 

(2) P{t < m} 

gives the distribution of the run length of a CUSUM test (e.g. van Dobben de Bruyn, 1968) 

and the probability that at least one among the first m customers in as single server queue 

has a waiting time exceeding b. Several recent papers have discussed its numerical evaluation 

(e.g. Woodhall, 1983, Waldmann, 1986). 



Although the method of Theorem 1 can also be applied to the unconditional proability (2), 

one can use a special, considerably simpler argument and obtain a more precise approximation, 

which in this case provides justification for the Hogan-Siegmund heuristic and indicates what 

one can expect to gain from second order approximations in related problems. This line of 

reasoning is developed in Section 3. 

Section 4 contains additional examples and miscellaneous remarks. 

2. Conditional Probability 

In order to facilitate comparisons between Theorem 1 below and the related Theorem 

8.72 of Siegmund (1985), we use the notation of that result, which W3is proved by a method 

which does not seem to adapt to multidimensional indexing sets. Here we modify a method 

developed by Woodroofe (1976, 1982)in one dimensional time. 

The following discussion omits some technical details which occur even in the one di- 

mensional case and concentrates on issues which only arise because of the multidimensional 

indexing set. 

Let Pfi denote the probability which makes xi,X2," - independent, identically distributed 

random variables with probability distribution of the form 

P^{i„ e dx} = exp[ex - xl;{e)]dF{x) 

relative to some fixed probability distribution F, which without loss of generality is assumed 

to have mean 0. The parameters fi and 6 have the one to one relation /i = t/»'(5) (= EftXi). In 

Section 3 it is notationally convenient to standardize F to have unit variance. 

Let 5„ = xi H \-Xn (n = 0,1, • • •). 

It is convenient to assume that for all /z there exists and no such that 

j —( 

\Ef,exp{iXxi)\"°dX< oo. 

This imples that for all n > no the P^ distribution of Sn has a continuous, bounded density 

function, /^_„, and as n —*• oo 

(S) f^^.n{^n^^^y + nfi)an/^ ^ <p{y) 



uniformly in y, where a^ = ip"{6) and (p denotes the standard normal density function (cf. 

Feller, 1972, p. 516). Also assume that ii has a density function. An alternative technical 

condition would be that F is an arithmetic distribution; and by using the technique of Lalley 

(1984), one can perhaps eliminate all such assumptions. 

Let 

P("^HA) = P,(A I 5„ = 0 

for events A defined in terms of ii, • • •, i^. By sufficiency the conditional probability does not 

depend on /i. Also let 

7-+(r_) = inf{n:5„> (<)0}. 

Theorem 1. Let 6 = mf and ^ = m^o for arbitrary fixed f > 0 and Co < f • Assume there exist 

fi2 < 0 < fii (necessarily unique) such that 

(4) i = MrV + iM2r'(?-eo) 

and 

(5) V[^(M2)] = V'[5(Mi)], 

where 6{ij,) denotes the inverse of the function fj, = tl)'{9). Let 6i = &(/x,) (i = 1,2), BQ = 6{^o), 

and erf = t/)"(^,) (t = 0,1, 2). Then as m -^ oo 

(6) p('"){f < m} ~ mC(f, eo) exp[-mB(f, 6)], 

where 

(7) B(f, eo) = (^1 - ^2)? - V'(^2) + V'(^o) + (^2 - 9o)4>\0o) 

and 

(8) C(,,eo) = -"<'+=°°«.<'- = "=> -o(. - £.)1«|-' 
(9i - h)liiW,l (crft/M? + cHi - &)/|«P)V2 

Remarks, (i) To evaluate C(f, ^o) it is usually adequate to use the approximation 

(9) P^.A^+ = ^}P^.Ar- = cx>}/[(^i - e2)Mi] = exp[-(^x - ^2)/'+] + o[(^i - ^2)'] 



as 6i — $2 —* 0, where p+ = EoS^^/{2EoSr+) an be calculated numerically (cf. Siegmund, 

1985, Proposition'10.37 and Theorem 10.55). A similar approximation holds for Pfi^{T+ = 

oo}P;,j{7-_ = oo}/[(6'i - e2)\fi2\] in terms of/)_ = Eo{S^_)/{2EoSr_). (ii) In the case dF{x) = 

<p{x)dx it is easy to see that ni = —^2 = 2f — ^Oj so Theorem 2 of Hogan and Siegmund (1986) 

is a special case. 

Proof of Theorem 1. Let 0 < t'o < jo < m and let 

J = -^(t'o, Jo) = {(».y) : 0 < 1 < y < m, y < JQ or j = jo and i < t'o}. 

Then 

(10) 

= Y. rPi^^s^o - Sio € 6 + dx}p('"){5y -Si<b v(,-,y) e J \ S^, - 5.„ = b + x}. 
■ ^. Jo 
»0<J0 

From Lemma 1-5 below, all of which involve standard arguments, one obtains (6), but with a 

constant C of the form 

(11) C = C'[second fraction in (8)]//ill/i21- 

In (11) 

/•oo 

(12) C = e-'^^'-^^^'PaJma.xSn < -i}P„,{min5„ + min5^ > x}dx, 
Jo "—1 ^-^ **—1 

where {Sl^, n = 0,1, • • •} is an independent copy of the random walk {S„, n = 0,1, ■ • ■}. The 

proof of Theorem 1 is completed by the evaluation of C given below in Lemma 7. 

Lemma 1 is an easy, well known consequence of (3) and the relation 

fo,n{y) = ^M-h + nrp{B)]f(i,n{y)^ 

where fi = ip'{9) = y/n. (Actually (3) must be strengthened slightly to provide for the desired 

uniformity.) 

Lemma 1. Let /i = t/''(^), cr^ = ^l>"{9), and assume |x| < Snfi^^^ for some sequence 8n -* 0. 

Then uniformly in a; zis n ~f oo 

/o,n(nM + x) ~ exp[-^(nM + x) + nrP{e)]ip{x/an^l^)/<Tv}l^. 



Lemmas 2 and 3 follow form Lemma 1, some standard estimates, and the identity 

Let D = {{io,jo) : to > m^^ jo < m ~ m^l\ \Jo - to - mf//ii| < mV"}. 

Lemma 2. As m -^ oo 

E    Pi^^i^io - Sio >b} = o[mexp{-mB(f, Co)}] 
(»o,io)^-D 

and 

E    PthSjo-Si,>b + x}<6{x)mexp{-mB{^,^o)}, 
(ioJo)eD 

where S{x) —+ 0 as a; —+ oo. 

Lemma 3. Suppose {to, jo) G D and put n = JQ- »O- Then uniformly in [to, jo) and |i| < m^/^^ 

>(m) 
PP{5,„ - Si, em^ + dx} ~ exp[-mS(f, ^o) - (^i - ^2)x] 

(13) ^ (27rm)VVo |/i2|(n- mf//ii) 
V' 

/ii(n- mf//ii 

(Tifl 1/2 (fx. 
(72 (m — n)^/^ 

Although the following lemma is not difficult to prove, its importance cannot be over 

emphasized. It shows that the two dimensional random field under consideration here behaves 

locally like a superposition of independent one dimensional random fields, and thus makes 

possible the explicit evaluation of C. 

Lemma 4. Suppose to > m^/^, jo <m- m}l^ and jo - to ~ mf//ii. Then uniformly in (to, jo) 

and X in compact subsets of [0, oo) 

P^J^\Sj -Si<h \/[i,j) e J 1 5,„ - Si, = b + x} 
(14) 

—+ Puj {max 5„ < -i}P„ {min5n + min5/, > x}, 
n>l n>0 n>l 

where {S^, n = 0,1, - • •} is an independent copy of {5„, n = 0,1, • • •}. 

Proof. Given Sj, — Si, = mf + x, the event on the left hand side of (14) equals 

{Sjo - Sj,-j + {Si,+i - Si,) > X y{i,j) : («o + i,jo - j) G J}. 

It is easy to see that in the quantification ^{i,j) such that (I'o +1,^0 ~ J) ^ J the indices {i,j) 

with t < — 1 and i > 1 are redundant, because the required inequality holds for these (t,jt') if 



it holds for x < — 1, j = 0 and for » = 0, j > 1. Hence the event above equals 

{Sio+i-Si„ > x\/i < -1 :{io + i,jo)e J; 

^30 - ^jo-j + •^«o+« - 'S'.o > X V j > 0,y > 1 : (to + ijo - j) e J}, 

which is contained in or contains 

{    min    {Si^^i - Si^) > X,    min (5y„ - 5j„_j) + min (5,-,+,- - Si„ > x}, 
—«<«< — ! 1<J<»1 0<»<?i 

according as n is arbitrary, but fixed, or n = jo — JQ. 

It is easy to see that for arbitrary n = 1, 2, • • •, given 5^ = m^o and Sj^ — Si^ = mf + x, 

as m —f oo the joint distribution of 

converges to the F^j joint distribution of Sj, j — 0,1,••', n; the joint distribution of 

Sio+i - 5'jg,    t = 0,1, • • •, n 

converges to the P^^ joint distribution of 5,-, t = 0,1, • • °, n; the joint distribution of 

Sio+i - 5,0,    t = 0, -1, • • •, —n 

converges to the P^j joint distribution of —5,-, » = 0,1, • • •, n; and asymptotically these three 

collections of random variables are stochastically independent. 

The proof is completed by letting m —>• oo with n held fixed and the three minima 

restricted to indices with |t| < n and j < n, then letting n —► oo and showing that the indices 

[t I > n or J > n do not contribute in the limit. The details of this final step are similar to the 

one dimensional ceise and are omitted. 

Lemma 5. As m —>■ oo 

y r p^'^^is.o - Si„ e b + dx}p^'^\sj -Si<b v(t,y) e J | 5,-„ - 5,„ = b + x} 

~   Right hand side of (6) 

with C as given in (11) and (12). 

Proof.   To sum the approximations provided by Lemmas 2-4 over D, observe that by (4) 

there are asymptotically m(l - f/^i) = rn{^ - ^O)/|M2| terms »o, and for each JQ the sum over 



jo = to + n of (from (13)) 

(2;rm)Wo 
(Ti<T2n^/2(m — n)^/^ a2{rn — n)^/^ <P 

Hi{n-m^/ni) 

(Tin 1/2 

converges to 

To complete the proof of the theorem we must evaluate the constant C defined in (12). 

This part of the argument seems substantially more difficult than the analogous result of Hogan 

and Siegmund (1986, Lemma 3.4). The following lemma is well known (e.g. Woodroofe, 1982, 

p. 26). 

Lemma 6. For x > 0 

P^, {mm Sn>x} = MiP^i {Sr+ > x}/E^, (5,+) 

and 

P;,,{max5„ < -x} = ^i2P^^^{Sr- < -x}/E^^Sr_. 

Lemma 7. Let {S*^, n = 0,1, • • •} be an independent copy of {5„, n = 0,1, • • •}. 

TOO 

,    , /     exp[(ei - e2)x]P^^{ma.xSn < -x}Pa,{mmSn + minS^ > x}dx 
(15) Jo n>l n>0 n>l 

= (^1 - ^2)-'P^\K = cx>}p2jr_ = c«} 

Proof.   For y < 0 let T{y) = inf{n : 5„ < y}, and observe that by Wald's likelihood ratio 

identity and (5) 

(16) •.     P^,{r(y)<oo} = .E^,exp[(^i-^2)5,(,)]. 

Also 

(17) P^,{min5„<y} = P^,{7-(y)<oo}        (y < 0). 
f»>0 

If one writes the convolution appearing in the integrand in (15) as an integral, and uses Lemma 



6, (16), and (17), after some manipulation one obtains 

exp[(6'i - e2)x]P^^{ma.xSn < -x}P^,{min5„ + minS^ > x}dx 
n<l n<0 n<l 

/•CX) 

'r_| Jo 

f 
Jo 

Mi|M2| 

Efij^Sr^lE^^Sr 

I 
Jo EfuSr^ 

I 
Jo 

" E~S   I ""^^^Pt^^^ - ^2)(»7 - a;) - E^, exp[(ei - ^2)(5,(,_^) + r? - x)]dx 
■'fl2'~'T-\ 

Consider the inner integral to be of the form (in the notation of Feller, 1971, Chapter 

XI) Fo * Z{ri), where dFo(x) = P^,^{\Sr_\ < x}dx/\Ef,^Sr_\ is the stationary distribution for 

the renewal process determined by F{x) = Pn^dSr-l < x} and Z is a solution of the renewal 

equation Z — z->rF*Z,OT equivalently in terms of the renewal measure U, Z = U * z. It 

is known that Z determines z uniquely; and since FQ is the stationary distribution, i^b * 17 is 

proportional to Lebesgue measure and 

Fo*Z{r,) = {Fo*U)*z{rj)= [  z{x)dx/\Ef,,Sr^\. 
JQ 

It is easy to see in the present case that 

z{x) = exp[(5i - ^2)x][l - E^, expK^i - e2)Sr_}], 

and hence the left hand side of (15) equals 

EfnSr^\E^2Sr_\ Jo Jo 

^ MI|M2|[1 - -E^3exp{(g2 - 02)Sr.}][l - g^,exp{-(gi - g2)gr+}] 

(^1 - 62)Efij^Sr+\Efi^Sr_\ 

= P,Vr_ = cx)}P,\K = oo}/(^i - ^2) 

where the last equality is a consequence of Wald's identities and the relations P^j{r_  = 

oo}£;^,(r+) = 1, P^,{T+ = oo}E^,(r_) = 1. 

3. Unconditional Probability 

We continue to use the notation of Section 2 and consider the unconditional probability 

(2) with P = Pfi for some /z < 0.   In principle one can obtain a first order large deviation 



approximation for P^{t < m} by integrating the approximation of Theorem 1 with respect 

to the distribution of Sm- Here we consider a different approach and obtain a second order 

approximation to (2). This method WEIS mentioned briefly in Siegmund (1986), and for a 

related continuous time problem it was used by Hogan and Siegmund (1986). 

The proofs of the following results are for the most part modifications of arguments given 

in Siegmund (1975, 1979) - see also Siegmund (1985), Chapters VIII and X). Consequently 

the steps of the argument are given in a sequence of lemmas, but most details are omitted. 

Theorem 2. Assume that the P^ distributions of xi are strongly nonarithmetic in the sense 

that 

limsup|£?^exp(tAii)| < 1. 

Let Hi < 0 and assume there exists //i > 0 such that (5) holds. Let A = 61 — 62, where 

6i = 6{fj,i) (t = 1,2). Let 6 > 0 and assume that for some 6 > 0 

(18) mfii/b >l + 6,m^ exp(-A6) -> 0. 

Then as m, 6 —>■ 00 

(19) P^^{t <m} = A\n2\u+u. exp(-A6){m - b/m + D + o(l)}, 

where 

(20) u+ = P^^{r+ = oo}P^,{r_ = OO}/(MIA), i/_ = mu+/\n2\, 

and 

(21) + E^,{T.; r_ < OO)E^,{T+) + ^^,(7-+; T+ < OO)E^^{T.) 

/•oo 

- (MII^+)"^ /    {-BMI exp[-A(5^(:,)_:,) - iy+}P^j{min5n > -x}dx, 
Jo "■S.^ 

with r{x) =■ inf{n : 5„ > x}. 

Remark. The constant Av+u- in (19) and (20) is the first factor in the constant C of (6)and 

(8). The local expansions of Remark (i) following Theorem 1 applied to i>+ and i/_ together 

with the similar local expansion of D given in Theorem 3 below lead to the much simpler 



approximation 

(22)       P^,{t <m}^ exp[-A(6 + p+- p-)]{A\fi2\\m - fx-\b + p+ - p_)] + 3 - 77A/6}, 

where 7 = Eoxf and the PQ distribution of xi has been standardized to have unit variance. In 

the case of the unconditional probability (2), (22) gives precise meaning to the Hogan-Siegmund 

heuristic approximation (which applies only when 7 = 0). 

Theorem 3. Assume that the PQ distribution of ii is standardized to have unit variance. For 

Z? given by (21), as A-H-0 

A|M2li5 = 3 - A|/i2|(p+- P-)/MI - 7A7/6+o(A), 

where p± = \Eo{S^J/Eo{Sr^) and 7 = Eoxf. 

Table 1 contains some values of p = P^{t < m} computed numerically by Waldmann 

(1986). For comparison it gives first order (pi) and second order (P2) approximations from (22). 

The x's are normally distributed with mean /z = —.5 and 6 = 3. The value of p^ = \p-\ = .583 

(e.g. Siegmund, 1985, p. 225). The approximation p2 is quite good, but pi is rather poor. 

However, the values of b and m are quite small. Hogan and Siegmund (1986) compared similar 

approximations for (1) in a Monte Carlo experiment involving generally larger sample sizes 

and found that the first order approximation was reasonably good when ^ < 0 but not when 

^ > 0. Their heuristic second order approximation was good in all cases. Some Monte Carlo 

experimentation shows that the approximation p2 begins to deteriorate when p is about .2, 

and as expected is poor for large values of p. 

TABLE 1 

Approximations to p = P^{f < m} 

m P Pi P2 

9 .054 .023 .052 

12 .079 .047 .076 

15 .102 .070 .098 

18 .126 .093 .122 

10 



Theorem 2 is a consequence of Lemmas 8-12. 

Let T = inf{n : S„ ^ (0, 6)}. 

Lemma 8. For arbitrary b > 0, fi < 0 

Pn{t < m} < P^{T+ = oo}E^{{m - T + 1); T < m, ST > b} 

f23) '""^ 
^    '^ + ^ P^{n < 7-+ < oo}P^{r < m - n, 5r > b}. 

A lower bound for Pfi{t < m} is given by the right hand side of (23) divided by 1 + 

E^{{m~T + l);T<m,ST>b}. 

Proof. See Siegmund (1986), Proposition 3.23. 

Lemma 9. Under the condition (18) 

P/iJt <m} = P;.j{r+ = cx>}E^^{m - T + 1; T < m, ST > b) 

+ E^^{T+- r+ < oo)P^,{5r >b) + o(e-^*). 

Proof. Lemma 9 follows from Lemma 8, the inequality 

E^{m - T + 1; T < m, 5r > 6} < mP^jSr >b}< me"^^ 

and a related elementary inequality. 

Lemma 10. Under the conditions of Theorem 2 

P^^{T < m, ST > 6} = F^JSj > b}{\ + o{m-^)) 

= i/+P^i{r_ = oo} exp(-A6)(l + o(m-^)) 

and 

E^^{T- T<mST>b) = i.+exp(-A6){P^,{r_ = oo}[6 +P+(MI)]/MI 

+ Hi^E^,{Sr_] r_ < oo) - .E^i(r_; r_ < oo)   . 

+ P^,,{^- = oo}(i/+Mi)-^ /    [Ef,^ exp{-A{SrU) - x)} - i/+]P^j{minS„ > -x}dx 
Jo "20 

+ o(l)}, 

where ^+(MI) = |£^^i(S'2^)/^Mi('5'r+)- 

Theorem 2 follows easily by substitution of the approximations of Lemma 10 into Lemma 

9 and use of the well known relation P^ilv- = oo} = l/^^j(7-+) to rewrite the resulting 

expression. 

11 



Theorem 3 follows from Lemmeis 11-12. 

Lemma 11. Assume that the Po-distribution of xi has been standardized to have variance 1. 

Then as A -► 0 

E^^i^V, T+ <co) = fi-^Eo{Sr+){l - p+fii + o(A)), 

S^,(r_) = Mr'^o(5._)(l + P-M2 + o(A)), 

and 

fi-^E^,,{Sr+)E^,{Sr_; T.<oo) = -(2MI)-' +P+ - ^7 + o(l), 

where p± = lEo{S^J/Eo{Sr^) and 7 = Eo{xl). Also p+ + /)_ = 7/8. 

Proof. The first two approximations have proofs similar to (9) (cf. Siegmund, 1985, Proposition 

10.37). For the third, differentiate the Wiener-Hopf factorization of the characteristic functions 

of Sr^ and 5T_ twice (e.g. Siegmund, 1985, Theorem 8.41) to obtain 

f^,^E,ASr,)E,ASr.; r_ < 00) = ^^-^ - -^ 

and then let fxi --> 0. The identity p^ + p- = 7/3 follows eeisily form a three fold differentiation 

of the Wiener-Hopf factorization. 

Lemma 12. Let r(x) = inf{n : 5„ > x}. Then 

/•oo 
/     {E^, exp[-A(5,(^) ~ x)] - i/+}P^,{min5„ > -x}dx -^ 0 

Jo "2" 

as /zi —♦ 0. 

Proof. Since P^j{min„>o5„ > -x} —^ 0 for each fixed i as ;ii ^ 0, it suffices to consider 

the integral from XQ to 00, with XQ arbitrarily large. Stone's (1965) renewal theorem with 

exponentially small remainder can be made uniform in /ii, as indicated briefly by Siegmund 

(1979), to show that for some 5 > 0 

/•oo 

(24) PM,{5.(.) - X > y} = [E^.Sr^r' /     P^,{5,^ > u}du + 0{e~'n 
•'y 

uniformly in y and /zi close to 0. Integration by parts and (24) show that uniformly in /ii 

E^, exp[-A(5,(^) - x)] = v+ + ©(e"*^), 

12 



which allows one to complete the proof by letting fxi —> 0, then XQ —> oo. 

4. Discussion. 

The structure which makes possible the explicit evaluation in Theorem 1 is found in the 

proof of Lemma 4. Locally the increments to the two dimensional random field are approxi- 

mately a superposition of independent one dimensional random fields. Somewhat more pre- 

cisely, if {Wm{i,j), i,j = 0,1, • • •, m) denotes a sequence of (two dimensional) random fields, 

the required property is that for the appropriate (t'o) io). which typically are proportional to m, 

conditional on Wm{io,jo) assuming a large value, the increments Wm(*o + *)io~ j) ~^m(»Oj Jo)) 

perhaps normalized, converge in law as m —► oo to a sum of independent random walks of the 

form Sii + S2y (t = 0, ±1, ±2, • • •, j = 0,1,2, • • ■). 

Although this property is quite special, there are natural problems which have the required 

structure. Hogan and Siegmund (1986) give some examples. Another class of examples involves 

the empirical process as a function of the number of observations, which in the limit becomes 

the so-called Kiefer-Miiller process. 

For example, let W{s,t), 0<s<l, 0<f< oo, denote the Gaussian random field with 

mean 0 and 

EW{si,ti)W{s2,t2) = 4(si A S2)(l - si V S2){ti A fj)- 

The following result is of interest to a statistician who several times as data accumulate an- 

nounces Kolmogorov-Smirnov confidence bands for a distribution function and wants to know 

the overall confidence to attach to the several statements. A related, slightly different re- 

sult gives an approximation to the zisymptotic significance level of a nonparametric test for a 

change-point discussed by Deshayes and Picard (1981) and Picard (1985). For fixed c > 0 and 

mo = mto < mi = mti, as n —^ oo 

P {     max    j-'^^^\W{i/m,j)\ > cm^l^ 
I     0<t<m 

[25) V mo<j<mi 
-1/2 

1 f'^o 
^ 2i^(2c)mc^exp(—mc^) I x  ^u{x)di 
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where 

i/(i) = 2x-2exp (-2^n-i$ T-^xnV^ n 

= exp{-px) + o{x^)        (x-*0), 

$ denotes the standard normal distribution function, and p = .583. To obtain the analo- 

gous result for a continuous maximization over s E [0,1] (resp. t G [mo, "^i]) one replaces i^{2c) 

(resp. i'(x)) by 1 in (25). 

The approximation of Theorem 2 is concerned with the probability that a CUSUM test 

for a process which is in control terminates well in advance of its average run length. Although 

this probability is of particular interest, one would also like to have approximations (i) to the 

right hand tail of the distribution of t and approximations which are valid (ii) when n > 0, (iii) 

for tests with fast initial response feature (Lucas and Crozier, 1982), and (iv) for two-sided 

tests. Corrected diffusion approximations (Siegmund, 1979, 1985) seem to provide a unified 

approach to these problems which takes appropriate advantage of the special structure of the 

process Sn — mino<fc<n Sk (n = 0,1, • • •), but they unfortunately do not seem to apply to more 

general random fields. 

One simple approximation in the special case 7 = -^0(11) = 0 is as follows: approximate 

Pfi{t < m} for a boundary at 6 by the analogous probability for a Brownian motion process 

with boundary a,t b' = b + p+ — p-.. The approximating Brownian probability can be evaluated 

as an infinite series (Sweet and Hardin, 1970) and for values of m which are not too small one 

needs only a single term of the series to obtain good numerical results. For the case of normal 

I's considered in Section 3, one obtains when -^lb' > 1 {b' = b + 2p+ = 6 + 1.166) 

. ^ 2qsmh\qb')exp{^^b'-l{^^'-q')m} 
^^^^ /^^lt>m>_    _t,(^2_^2)(i + ^sinh2(g6')/g26')   ' 

where g > 0 satisfies tanh(5r6') = —q/fJ.. 

For the small values of m in Table 1 one expects the approximation provided by (26) to be 

poor unless one includes more terms of the infinite series. For example, for m = 12, (26) yields 

.070, whereas (22) gives .076 and the correct value is .079. For m = 82 and 345, for which 

according to Waldmann (1986) the exact values of P^{t < m} are .50 and .95 respectively, the 

approximation (22) is poor, but (26) yields .492 and .948. 

14 



The corrected diffusion approach to distributional problems associated with CUSUM tests 

will be discussed systematically in a future paper. 

Simple modifications of the proof of Theorem 1 yield a large deviation approximation for 

the Kuiper (1960) statistic 

(27) max   {y - F„(y) - [x - i^„(x)], 
0<i<v<l 

where i^„ denotes the empirical distribution for a sample of n independent random variables 

uniformly distributed on (0,1). From a standard representation of uniform order statistics by 

sums of exponentially distributed variables, it follows that the probability that (27) exceeds f 

equals 

P{   max   [W,- - Wi - {j - 0] > Mf - 1 I W^„+i - (n + 1) = -1}, 
0<t<j<n 

where Wjt = yi + • • • + yjt and the y's are independent standard exponential random variables. 

If one puts m = n + 1, 6 = (m — l)f - 1, and ^ = — 1, this probability is almost in the form 

required by Theorem 1. Minor modifications in the proof of that result yield 

^{, max   [y - F„(y) - {x - F„(x)}] > f} 
0<i<j/<l 

ngi(l - gi)?^/'exp{-n[(gi - g;)^ + gg + log(l - g;)]} 
{\eMi-e,)[i + el(i-e{)i{e\{i-e^)}]Yi^     ' 

Siegmund (1982) obtains the analogous approximation for the ordinary Kolmogorov- 

Smirnov statistic and shows numerically that it provides extraordinarily accurate numerical 

results, but Hogan and Siegmund's (1986) Monte Carlo experiment for a normal random walk 

indicates that one cannot expect comparable accuracy in this case, unless the sample size is 

fairly large. It would be interesting to obtain a second order approximation along the lines of 

Theorems 2 and 3. 
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